本题满分14分)已知函数,,设.(Ⅰ)求函数的单调区间;(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;(Ⅲ)是否存在实数,使得函数的图像与函数的图像恰有四个不同的交点?若存在,求出实数的取值范围;若不存在,说明理由.
如图,在四棱锥P—ABCD中,底面ABCD是边长为4的菱形,且,菱形ABCD的两条对角线的交点为0,PA=PC,PB=PD,且PO=3.点E是线段PA的中点,连接EO、EB、EC. (I)证明:直线OE//平面PBC;(II)求二面角E-BC-D的大小
已知ΔABC中,内角A、B、C所对边的长分别是a、b、c,且点在直线 x—y=(a—b) sinB上(I)求角C的大小;(II)若,且A<B,求的值.
已知函数在其定义域上满足:,①函数的图象是否是中学对称图形?若是,请指出其对称中心(不证明)②当时,求的取值范围③若,数列满足,那么若正整数N满足n>N时,对所有适合上述条件的数列,恒成立,求最小的N。
1)在平面直角坐标系中,已知某点,直线.求证:点P到直线的距离2)已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线与抛物线C相交于A,B两点,若向量在向量上的投影为n,且,求直线的方程。
已知数列是公差为1的等差数列,是公比为2的等比数列,分别是数列和前n项和,且①分别求,的通项公式。②若,求n的范围③令,求数列的前n项和。