如图,已知在直四棱柱中,,,.(I)求证:平面;(II)求二面角的余弦值.
(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响. (Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少? (Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记为接下来被邀请到的6个人中接受挑战的人数,求的分布列和均值(数学期望).
若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为.已知数列满足,则下列结论中错误的是().
已知函数. (1)若函数满足,且在定义域内恒成立,求实数b的取值范围; (2)若函数在定义域上是单调函数,求实数的取值范围; (3)当时,试比较与的大小.
已知圆,若椭圆的右顶点为圆的圆心,离心率为. (1)求椭圆的方程; (2)若存在直线l:y=kx,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段AB上,且,求圆M的半径r的取值范围.
在几何体ABCDE中,AB=AD=BC=CD=2,,且平面,平面平面. (1)当平面时,求的长; (2)当时,求二面角的大小.