(本小题满分12分)设函数(1)求的最小正周期和对称轴方程(2)当时,求的最大值及相应的的值
已知函数的定义域为,且对于任意,存在正实数L,使得均成立。(1)若,求正实数L的取值范围;(2)当时,正项数列{}满足①求证:;②如果令,求证:.
已知函数(1)当时,求曲线在点处的切线方程;(2)当时,若在区间上的最小值为-2,求实数的取值范围; (3)若对任意,且恒成立,求实数的取值范围.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;(2)求平面BCE与平面ACD所成锐二面角的大小;
2013年4月20日8时02分四川省雅安市芦山县(北纬30.3,东经103.0)发生7.0级地震。一方有难,八方支援,重庆众多医务工作者和志愿者加入了抗灾救援行动。其中重庆某医院外科派出由5名骨干医生组成的救援小组,奔赴受灾第一线参与救援。现将这5名医生分别随机分配到受灾最严重的芦山、宝山、天全三县中的某一个。(1)求每个县至少分配到一名医生的概率。(2)若将随机分配到芦山县的人数记为,求随机变量的分布列,期望和方差。
在数列{}中,,且,(1)求的值;(2)猜测数列{}的通项公式,并用数学归纳法证明。