已知椭圆的中心在坐标原点,焦点在轴上,以其两个焦点和短轴的两个端点为顶点的四边形是一个面积为4的正方形,设为该椭圆上的动点,C、D的坐标分别是,则的最大值为
设圆x2+y2=2的切线l与x轴正半轴、y轴正半轴分别交于点A,B,当|AB|取最小值时,切线l的方程为________.
已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为________.
已知双曲线=1(a>0,b>0)的渐近线方程为y=±x,则它的离心率为________.
如图,在正方体ABCD-A1B1C1D1中,点P在直线BC1上运动时,有下列三个命题:①三棱锥AD1PC的体积不变;②直线AP与平面ACD1所成角的大小不变;③二面角P-AD1-C的大小不变.其中真命题的序号是________.
如图为某几何体的三视图,则该几何体的体积为________.