A、B两城相距100km,在两地之间距A城km处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数.若A城供电量为20亿度/月,B城为10亿度/月.(1)把月供电总费用表示成的函数,并求定义域;(2)核电站建在距A城多远,才能使供电费用最小.
在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点。 (1)求实数的取值范围; (2)设椭圆与轴正半轴,轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由。
若,且为负实数,求复数.
(本小题满分13分) 已知数列满足:, (I)求得值; (II)设,试求数列的通项公式; (III)对任意的正整数,试讨论与的大小关系。
(本小题满分13分) 已知椭圆C的对称中心为原点O,焦点在轴上,左右焦点分别为,且=2点在该椭圆上。 (I)求椭圆C的方程; (II)过的直线与椭圆C相交于A,B两点,若的面积为,求以为圆心且与直线相切的圆的方程。
(本小题满分13分) 已知函数,其中为常数,且。 (I)当时,求在()上的值域; (II)若对任意恒成立,求实数的取值范围。