A、B两城相距100km,在两地之间距A城km处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数.若A城供电量为20亿度/月,B城为10亿度/月.(1)把月供电总费用表示成的函数,并求定义域;(2)核电站建在距A城多远,才能使供电费用最小.
如图,设椭圆:的离心率,顶点的距离为,为坐标原点. (1)求椭圆的方程; (2)过点作两条互相垂直的射线,与椭圆分别交于两点. (ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由; (ⅱ)求的最小值.
已知函数在处达到极值, (1)求的值; (2)若对恒成立,求的取值范围.
如图,在四棱锥中,底面为直角梯形,,,底面,且,、分别为、的中点. (1)求证:平面; (2)求证:.
已知函数. (1)求函数在点处的切线方程; (2)求函数的单调递减区间.
已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且. (1)求直线的方程; (2)求圆的方程.