为了让更多的人参与2011年在深圳举办的“大运会”,深圳某旅游公司向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是旅游金卡(简称金卡),向境内人士发行的是旅游银卡(简称银卡)。现有一个由36名游客组成的旅游团到深圳参观旅游,其中是境外游客,其余是境内游客。在境外游客中有持金卡,在境内游客中有持银卡(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率(Ⅱ)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望
(本小题10分)设分别为椭圆的左、右两个焦点. (1)若椭圆上的点到两点的距离之和等于4,求椭圆的方程和焦点坐标; (2)设点是(1)中所得椭圆上的动点,,求的最大值.
(本小题10分)已知复数,若, (1)求; (2)求实数的值 .
(本小题满分11分)(理科做)如图1,在直角梯形中,,,,.把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点. (1)求证:平面平面; (2)求直线与平面所成角的正弦值; (3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由. (文科做)设函数. (1)求函数f(x)的单调区间和极值; (2)若对任意的不等式| f′(x)|≤a恒成立,求a的取值范围.
(本小题11分)已知椭圆过点,且长轴长等于4. (1)求椭圆C的方程; (2)是椭圆C的两个焦点,圆O是以为直径的圆,直线与圆O相切,并与椭圆C交于不同的两点A,B,若,求的值.
(本小题共11分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2 (1)求证:DE∥平面A1CB; (2)求证:A1F⊥BE; (3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.