(本小题12分)如图,函数y=|x|在x∈[-1,1]的图象上有两点A、B,AB∥Ox轴,点M(1,m)(m是已知实数,且m>)是△ABC的边BC的中点。(Ⅰ)写出用B的横坐标t表示△ABC面积S的函数解析式S=f(t);(Ⅱ)求函数S=f(t)的最大值,并求出相应的C点坐标。
若(a-2i)i=b-i,其中a,b∈R,i是虚数单位,求点P(a,b)到原点的距离.
已知m∈R,复数z=+(m2+2m-3)i,当m为何值时. (1)z∈R;(2)z是虚数;(3)z是纯虚数.
已知复数z=+(m2-5m-6)i(m∈R),试求实数m分别取什么值时,z分别为: (1)实数; (2)虚数; (3)纯虚数.
设向量a=(sinx,sinx),b=(cosx,sinx),x∈. (1)若|a|=|b|.求x的值; (2)设函数f(x)=a·b,求f(x)的最大值.
设两向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为钝角,求实数t的取值范围.