如图,直线与轴、轴分别交于A、B两点,把△OAB绕点O顺时针旋转90°得到△OCD.⑴在图中画出△OCD;⑵求经过A、B、D三点的抛物线的解析式;⑶点P在抛物线对称轴上运动①当直线CP把△OCD分成面积相等的两部分时,试求出点P的坐标;②是否存在点P,使为直角三角形,若存在,请求出点的坐标;如果不存在,请说明理由.
如图是一种新型滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图像的一部分,滑道BCD是二次函数图像的一部分,两滑道的连接点B为抛物线的顶点,且B点到地面的距离为2米,当甲同学滑到C点时,距地面的距离为1米,距点B的水平距离CE也为1米。(1) 试求滑道BCD所在抛物线的解析式;(2) 试求甲同学从点A滑到地面上D点时,所经过的水平距离.
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为万元.(销售利润销售价进货价)(1)求与的函数关系式;在保证商家不亏本的前提下,写出的取值范围;(2)假设这种汽车平均每周的销售利润为万元,试写出与之间的函数关系式;(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
(本题满分10分)某地震救援队探测出某建筑物废墟下方点处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果保留根号)
(本题满分10分) 如图,有一段斜坡BC长为10米,坡角∠CBD=10°,为使残疾人的轮椅车通行更省力,现准备把坡角降为5°(1)求斜坡新起点A到原起点B的距离;(2)求坡高CD(结果保留3个有效数字).参考数据:=0.1736 , =0.9848, =0.1763.
如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连结BE、CF. ⑴ 求证:△BDF≌△CDE;⑵ 若AB=AC,求证:四边形BFCE是菱形.