操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计: 纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240件,厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件,根据下表提供的信息,解答下列问题:
(1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求y与x之间的函数关系式 (2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案 (3)要使此次加工配件的利润最大,应采用哪种方案?最大利润是多少?
已知⊙O的直径AB的长为4㎝,C是⊙O上一点,∠BAC=30°,过点C作⊙O的切线交AB的延长线于点 P,求BP的长
根据国务院新闻办公室2011年4月28日发布的《2011年全国第六次人口普查主要数据公报(第1号)》,就全国人口受教育情况的数据绘制了条形统计图和扇形统计图如下: 根据统计图提供的信息,解答下列问题: (1)这次人口普查统计的全国人口总数约为亿人(精确到0.1) (2)补全条条形统计图和扇形统计图 (3)求扇形统计图中表示“高中文化”的圆心角的度数
为了建设社会主义新农村,华新村修筑了一条长3000m的公路,实际工作效率比原计划提高了20%,结果提前5天完成任务。问原计划每天修路多长?
如图,一次函数图象与x轴交于点B,与反比例函数图象 交于点A(1,-6),△AOB的面积为6,求一次函数和反比例函 数的解析式