(本小题满分7分)已知:等边三角形ABC(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD
(本题4分)如图,AB∥CD,∠A=60°∠C=∠E,求∠C。
(本题4分)一个多边形的内角和是它外角和的4倍,求这个多边形的边数。
(本题8分) 如图,EF∥AD,∠1=∠2, ∠BAC=70°,将求∠AGD的过程填空完整。解:∵EF∥AD∴∠2= ( )又∵∠1=∠2∴∠1=∠3( )∴AB∥ ( )∵∠BAC+ =180°( )∵∠BAC=70° ∴∠AGD= 。
(本小题满分12分)如下图,AB∥CD,直线a交AB、CD分别于点E、F,点M在EF上,p是直线CD上的一个动点,(点P不与F重合)(1)当点P在射线FC上移动时,如图(1),∠FMP+∠FPM=∠AEF成立吗?请说明理由。 (2)当点P在射线FD上移动时,如图(2),∠FMP+∠FPM与∠AEF有什么关系?说明你的理由。
在图所示的平面直角坐标系中表示下面各点:。A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。(1)A点到原点O的距离是__ __个单位长。(2)将点C向左平移6个单位,它会与点 重合。(3)连接CE,则直线CE与轴是什么位置关系?(4)点F到、轴的距离分别是多少?