(本小题满分8分)如图,抛物线(>0)与y轴交于点C,与x轴交于A 、B两点,点 A在点B的左侧,且.(1)求此抛物线的解析式;(2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由.
如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D. (1)求证:△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度.
如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE. (1)从图中任找两组全等三角形; (2)从(1)中任选一组进行证明.
如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.试说明AD+AB=BE.
已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.
如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.