“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少?
如图,在中,AB是的直径,与AC交于点D,, 求的度数;
解方程:.
某射击运动员在相同条件下的射击160次,其成绩记录如下:
(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01); (2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1), 并简述理由.
阅读下列材料,并回答问题. 画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且。事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。如果直角三角形中,两直角边长分别为a、b,斜边长为c,则,这个结论就是著名的勾股定理. 请利用这个结论,完成下面的活动: (1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为. (2)满足勾股定理方程的正整数组(a,b,c)叫勾股数组。例如(3,4,5)就是一组勾股数组。观察下列几组勾股数 ① 3, 4, 5 ; ② 5,12,13 ; ③ 7,24,25 ;④ 9,40,41 ; 请你写出有以上规律的第⑤组勾股数:. (3)如图,AD⊥BC于D,AD=BD,AC=BE。AC=3,DC=1,求BD的长度. (4)如图,点A在数轴上表示的数是,请用类似的方法在下图数轴上画出表示数的B点(保留作图痕迹).
在ABC中,AB=AC,∠BAC=120°,AD⊥AC于点A, (1)求∠BAD的度数. (2)证明:DC=2BD.