如图,已知四棱锥的底面为直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD(1)证明:平面平面ABCD;(2)如果,且侧面的面积为8,求四棱锥的体积。
将圆按向量a=(-1,2)平移后得到⊙O,直线l与⊙O相交于A、B两点,若在⊙O上存在点C,使=λa,求直线l的方程及对应的点C的坐标.
求函数的值域.
已知圆C:(x-2)2+(y-1)2=1,求过A(3,4)的圆C的切线方程.
已知两点A(-1,-5),B(3,-2),直线L的倾斜角是直线AB的倾斜角的一半,求直线L的斜率.
过点P(1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程.