(本题满分10分)如图所示,在直角坐标系中,平行四边形OABC的顶点坐标B(6,3),C(2,3).(1)求出过O、A、B三点的抛物线解析式;(2)若直线恰好将平行四边形OABC的面积分成相等的两部分,试求b的值(3)若与轴、y轴的交点分别记为M、N,(1)中抛物线的对称轴与此抛物线及轴的交点分别记作点D、点E,试判断△OMN与△OED是否相似?
已知二次函数 (a、m为常数,且a¹0)。 (1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点; (2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。 ①当△ABC的面积等于1时,求a的值: ②当△ABC的面积与△ABD的面积相等时,求m的值。
如图,AD是圆O的切线,切点为A,AB是圆O的弦。过点B作BC//AD,交圆O于点C,连接AC,过点C作CD//AB,交AD于点D。连接AO并延长交BC于点M,交过点C的直线于点P,且ÐBCP=ÐACD。 (1)判断直线PC与圆O的位置关系,并说明理由: (2)若AB=9,BC=6,求PC的长。
小丽驾车从甲地到乙地。设她出发第x min时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系。 (1)小丽驾车的最高速度是 km/h; (2)当20£x£30时,求y与x之间的函数关系式,并求出小丽出发第22 min时的速度; (3)如果汽车每行驶100 km耗油10 L,那么小丽驾车从甲地到乙地共耗油多少升?
某商场促销方案规定:商场内所有商品案标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额。
注:300~400表示消费金额大于300元且小于或等于400元,其他类同。 根据上述促销方案,顾客在该商场购物可以获得双重优惠。例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400´(1-80%)+30=110(元)。 (1)购买一件标价为1000元的商品,顾客获得的优惠额是多少? (2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?
已知不等臂跷跷板AB长4m。如图①,当AB的一端碰到地面时,AB与地面的夹角为a;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为b。求跷跷板AB的支撑点O到地面的高度OH。(用含a、b的式子表示)