如图9,抛物线与轴交于A、B两点,与轴交于点C(0,).(1)求抛物线的对称轴及的值;(2)抛物线的对称轴上存在一点P,使得的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.
如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF. (1)求证:四边形CEDF是平行四边形; (2)若AB=4,AD=6,∠B=60°,求DE的长.
如图所示,在□ABCD中,对角线AC与BD相交于点O,过点O任作一条直线分别交AB,CD于点E,F. (1)求证:OE=OF; (2)若AB=7,BC=5,OE=2,求四边形BCFE的周长.
如图所示的一块地,AD=9m,CD=12m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.
化简求值:,其中.
(本题10分)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2). (1)令P0(2,-3),O为坐标原点,则d(O,P0)=; (2)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形; (3)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.若P(a,-3)到直线y=x+1的直角距离为6,求a的值.