解方程组(每小题4分,共8分)(1) (2)
如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD的边长为2,E是AD的中点,按CE将菱形ABCD剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上. (1)在下面的菱形斜网格中画出示意图;
(2)判断所拼成的三种图形的面积()、周长()的大小关系(用“=”、“>”或“<”连接):
如图,反比例函数的图象过矩形OABC的顶点B,OA、0C分别在x轴、y轴的正半轴上,OA:0C=2:1.(1)设矩形OABC的对角线交于点E,求出E点的坐标;(2)若直线平分矩形OABC面积,求的值.
解方程:
(本题满分7分) 将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(–3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.
某超市在家电下乡活动中销售A、B两种型号的洗衣机.A型号洗衣机每台进价500元,售价550元;B型号洗衣机每台进价1000元,售价1080元.(1)若该超市同时一次购进A、B两种型号洗衣机共80台,恰好用去6.1万元,求能购进A、B两种型号洗衣机各多少台?(2)该超市为使A、B两种型号洗衣机共80台的总利润(利润售价进价)不少于5200元,但又不超过5260元,请你帮助该超市设计相应的进货方案。