(每小题5分,共10分) 计算:(1)一个三角形底边的长是,高是。如果将底边增加2,高减少2,,为了使面积不变,那么和应满足什么关系?(2)已知等腰三角形的周长为20,若有一边长为4,,则另外两边的长分别是多少?
(本题8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G. (1)求证:; (2)若求的大小.
(本题8分)2012年5月13日是母亲节,某校开展了形式多样的感恩教育活动.该校从每班随机抽取一部分学生进行调查,并将调查结果绘制成如下的扇形统计图和频数分布直方图. 根据上图信息,解答下列问题: (1)求出本次被调查的学生人数,并补全频数分布直方图; (2)若这所学校共有学生2400人,已知被调查的学生中,知道母亲生日的女生人数是男生人数的2倍,请根据上述调查结果估计该校知道母亲生日的女生有多少人?
(本题6分)解不等式组.
(本题6分)先化简,再求值:其中,.
如图所示,在平面直角坐标系中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在轴的负半轴和轴的正半轴上,抛物线经过点A、B,且18+=0. (1)求抛物线的解析式; (2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动. ① 移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围; ②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.