王老师对河东中学九(一)班的某次模拟考试成绩进行统计后,绘制了频数分布直方图(如图,分数取正整数,满分120分).根据图形,回答下列问题:(直接填写结果)(1)该班有名学生;(2)89.5 --99.5这一组的频数是 ,频率是(3)估算该班这次数学模拟考试的平均成绩 是.
解方程:
如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),过D作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D. (1)设BD=x,AE=y,求y关于x的函数关系式,并写出定义域. (2)当⊙D与AB边相切时,求BD的长. (3)如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切?
如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去. (1)快艇从港口B到小岛C需要多少时间? (2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?
如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB. (1)求该抛物线的解析式; (2)求证:△OAB是等腰直角三角形; (3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.
如图,已知AD既是△ABC的中线,又是角平分线,请判断: (1)△ABC的形状; (2)AD是否过△ABC外接圆的圆心O,⊙O是否是△ABC的外接圆,并证明你的结论.