已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD. (1)如图①,当PA的长度等于 时,∠PAB=60°;当PA的长度等于 时,△PAD是等腰三角形; (2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1 S3-S22的最大值,并求出此时a,b的值.
解不等式组,并将它的解集在数轴上表示出来。
解不等式,并写出它的非正整数解。
解方程组:
如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3).矩形O'A'BC'是矩形OABC绕B点逆时针旋转得到的.O'点恰好在x轴的正半轴上, O'C'交AB于点D. (1)求点O'的坐标,并判断△O'DB的形状(要说明理由)(4分) (2)求边C'O'所在直线的解析式.(4分) (3)延长BA到M使AM=1,在(2)中求得的直线上是否存在点P,使得ΔPOM是以线段OM为直角边的直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.(2分)
甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示. (1)求甲组加工零件的数量y与时间之间的函数关系式.(2分) (2)当x=2.8时,甲、乙两组共加工零件件; 乙组加工零件总量的值为.(4分) (3) 加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱? (2分)