如图,已知A,B两点的坐标分别为A(0,),B(2,0)直线AB与反比例函数的图像交与点C和点D(-1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数;(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′的长.
对于任意的有理数a,b,c,d,我们规定如: ,根据这一规定,解答下列问题:化简若x,y同时满足=5,,求x+y的值
判断下列事件哪些是必然事件,哪些是不确定事件,哪些是不可能事件?事件1:三条边对应相等的两个三角形全等事件2:三个角对应相等的两个三角形全等事件3:有两边和其中一边上的中线对应相等的两个三角形全等事件4:有两边和其中一边的对角对应相等的两个三角形全等事件5:有两角和其中一角的对边对应相等的两个三角形全等对于事件4,现在我们通过画图来说明。例如,已知∠α和线段a,b.用直尺和圆规作△ABC,使得∠C=∠α,AC=b,AB=a
计算
解决问题:如图,已知正方形ABCD,点E是边AB上一动点,点F在AB边或其延长线上,点G在边AD上.连结ED,FG,交点为H.如图1,若AE=BF=GD,请直接写出∠EHF= ▲ °;如图2,若EF =CD,GD=AE,设∠EHF=α.请判断当点E在AB上运动时, ∠EHF的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请求出tanα.
在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.第一小组的同学发现,在如图1-1的矩形ABCD中,AC、BD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程是 ▲ .第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.