如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).
如图,BE,DF是甲,乙两人在路灯下形成的影子,请在图中画出灯泡的位置.
点光源发出的光线照射到物体上,会形成影子,那么在手术室里有4位医生,会有几个影子?说明你的理由.
说出平行投影与中心投影的异同.
如图,Rt△ABC中,AC=8, BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.
阅读材料:如图(1),△ABC的周长为L,内切圆O的半径为r,连结OA,OB,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积. ∵S△ABC =S△OAB +S△OBC +S△OCA 又∵S△OAB =AB·r,S△OBC =BC·r,S△OCA =AC·r ∴S△ABC =AB·r+BC·r+CA·r =L·r(可作为三角形内切圆半径公式) (1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径; (2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式; (3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…an,合理猜想其内切圆半径公式(不需说明理由).