已知,且 求证:
(本小题满分10分)已知四棱锥P—ABCD的底面为直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点。(I)求AC与PB所成角的余弦值;(II)求面AMC与面BMC所成二面角的余弦值的大小。
(选修4—5:不等式选讲)设x是正数,求证:
(选修4—4:坐标系与参数方程)已知两个圆的极坐标方程分别是,求这两个圆的圆心距。
(选修4—2:矩阵与变换)已知矩阵,矩阵M对应的变换把曲线变为曲线C,求曲线C的方程。
(选修4—1:几何证明选讲)如图,AB是⊙O的直径,C、F为⊙O上的点,且CA平分∠BAF,过点C作CD⊥AF,交AF的延长线于点D。求证:DC是⊙O的切线。