已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点. (1)求含有常数a的抛物线的解析式; (2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD = PH; (3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD = ,求a的值.
已知,一次函数y=x+1的图象与反比例函数的图象都经过点A(a,2). (1)求a的值及反比例函数的表达式; (2)判断点B是否在该反比例函数的图象上,请说明理由.
“安全教育,警钟长鸣”,为此,某校随机抽取了九年级(1)班的学生对安全知识的了解情况进行了一次调查统计.图①和图②是通过数据收集后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题: (1)九年级(1)班共有 名学生; (2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是 ; (3)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有 名.
如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2) (1)若点C与点A关于原点O对称,则点C的坐标为 ; (2)将点A向右平移5个单位得到点D,则点D的坐标为 ; (3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.
解方程组.
如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.