一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF(1)求证:△ADE≌△BFE。(2)连接EG,判断EG与DF的位置关系并说明理由。
如图,在△ABC中,AB=13,BC=10, BC边上的中线AD=12.(1)AD平分∠BAC吗?请说明理由.(2)求:△ABC的面积.
如图,已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,求:∠AFD的度数?.
如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是 ,(2)若∠1=60°,求∠3的度数;(3)若AB=4,AD=8,求BE的长度.
已知:如图,点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.