一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)
如图,已知点P(a,b)、Q(b,c)是反比例函数y=在第一象限内的点,求的值.
已知点P(﹣1,n)在双曲线y=上. (1)若点P(﹣1,n)在直线y=﹣3x上,求m的值; (2)若点P(﹣1,n)在第三象限,点A(x1,y1),B(x2,y2)在双曲线上,且,试比较y1,y2的大小.
对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.
计算: (1)(﹣12a2b2c)•(﹣abc2)2= _________ ; (2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .
先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2