一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)
中心为 O 的正六边形 ABCDEF 的半径为 6 cm ,点 P , Q 同时分别从 A , D 两点出发,以 1 cm / s 的速度沿 AF , DC 向终点 F , C 运动,连接 PB , PE , QB , QE ,设运动时间为 t ( s ) .
(1)求证:四边形 PBQE 为平行四边形;
(2)求矩形 PBQE 的面积与正六边形 ABCDEF 的面积之比.
某服装专卖店计划购进 A , B 两种型号的精品服装.已知2件 A 型服装和3件 B 型服装共需4600元;1件 A 型服装和2件 B 型服装共需2800元.
(1)求 A , B 型服装的单价;
(2)专卖店要购进 A , B 两种型号服装60件,其中 A 型件数不少于 B 型件数的2倍,如果 B 型打七五折,那么该专卖店至少需要准备多少货款?
某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,共调查了多少名学生;
(2)补全条形统计图;
(3)若该校爱好运动的学生共有800名,则该校学生总数大约有多少名.
如图, ⊙ O 的直径 AB 交弦(不是直径) CD 于点 P ,且 P C 2 = PB · PA ,求证: AB ⊥ CD .
甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表法求:
(1)取出的3个小球上恰好有一个偶数的概率;
(2)取出的3个小球上全是奇数的概率.