(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有 人,在扇形图中,表示“其他球类”的扇形的圆心角为 度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人.
先阅读下列材料,然后解答问题: 材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6. 一般地,从n个不同元素中选取m个元素的排列数记作Anm, Anm=n(n-1)(n-2)…(n-m+1)(m≤n). 例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60. 材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3. 一般地,从n个不同元素中选取m个元素的组合数记作Cnm, Cnm=(m≤n). 例:从6个不同元素中选3个元素的组合数为: C63==20. 问:(1)从7个人中选取4人排成一排,有多少种不同的排法? (2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?
阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索: 设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn. ∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=________,b=________; (2)利用所探索的结论,找一组正整数a、b、m、n,填空:________+________=(______+______)2; (3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值.
如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距。当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变. (1)计算:O1D=________,O2F=________. (2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2=________. (3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).
如图是某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE.甲、乙两人同时从B站乘车到F站.甲乘1路车,路线是B—A—E—F;乙乘2路车,路线是B—D—C—F.假设两车速度相同,途中耽误时间相同,那么谁先到达F站?请说明理由.
如图,在四边形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足为E,且DE=EB=5,请用割补(旋转图形)的方法求四边形ABCD的面积.