已知是椭圆的左、右焦点,过点作倾斜角为的动直线交椭圆于两点.当时,,且.(1)求椭圆的离心率及椭圆的标准方程;(2)求△面积的最大值,并求出使面积达到最大值时直线的方程.
已知实数t满足关系式(a>0且a≠1) (1)令t=ax,求y=f(x)的表达式; (2)若x∈(0,2时,y有最小值8,求a和x的值.
已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R). (1)求证:两函数的图象交于不同的两点A、B; (2)求线段AB在x轴上的射影A1B1的长的取值范围.
已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围. (2)若方程两根均在区间(0,1)内,求m的范围.
设二次函数,方程的两个根满足.当时,证明.
设,若,,, 试证明:对于任意,有.