(本小题满分12分)如图,在直三棱柱中,、分别是、的中 点,点在上,。求证:(1)EF∥平面ABC; (2)平面平面.
,定点F(10,4),对于x轴上移动的点P(t,0)作一折线FPQ,使,若折线FPQ的PQ部分与正方形ABCD的边界有公共点,(1)求:B、D坐标;(2)求t的取值范围.
两点(1)求△AOB面积的最小值及此时直线方程(O为原点)(2)求直线在两坐标轴上截距之和的最小值
的方程.
(文科题)要建造一个无盖长方体水池,底面一边长固定为8m,最大装水量为72m,池底和池壁的造价分别为2元/、元/,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?