某校为了解本校八年级学生的课外阅读喜好,随即抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图8是整理数据后画的两幅不完整的统计题,请你根据图中的信息,解答下列问题(1)这次活动一共调查了 名学生.(2)在扇形统计图中,“其它”所在的扇形圆心角为 度.(3)补全条形统计图(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有 人.
如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,求这个车轮的外圆半径长.
抛物线与x轴分别交于点A (-1,0)和点B,与y轴的交点C坐标为(0,-3). (1)求抛物线的表达式; (2)点D为抛物线对称轴上的一个动点,若DA+DC的值最小,求点D的坐标.
如图,直线y=3x与双曲线的两个交点分别为A (1 ,m)和B. (1)直接写出点B坐标,并求出双曲线的表达式; (2)若点P为双曲线上的点(点P不与A、B重合),且满足PO=OB,直接写出点P坐标.
小红想要测量校园内一座教学楼CD的高度.她先在A处测得楼顶C的仰角30°,再向楼的方向直行10米到达B处,又测得楼顶C的仰角60°,若小红的目高(眼睛到地面的高度)AE为1.60米,请你帮助她计算出这座教学楼CD的高度(结果精确到0.1米)参考数据:,,
如图,在中,,,为上一点,,,求的长.