已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.(1)如图1,当点E在直径AB上时,试证明:OE·OP=r2(2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
近年来,有私家车的业主越来越多,某小区为解决“停车难”问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中水平线AB=10m,BD⊥AB,∠BAD=20°,点C在BD上,BC=1m.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.李建认为CD的长度就是限制的高度,而孙杰认为应该以CE的长度作为限制的高度.李建和孙杰谁说的对?请你判断并计算出限制高度.(结果精确到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
某中学为了了解本校八年级女生“一分钟跳绳”项目基础情况,从八年级随机抽取部分女生进行该项目测试,并将测试所得的数据,绘制成如图所示的部分频数分布直方图(从左到右依次分为第一小组,第二小组…第六小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题: (1)补全频数分布直方图. (2)计算在扇形统计图中第一小组对应的扇形的圆心角度数. (3)这次测试成绩的中位数落在第 小组. (4)若测试八年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校八年级女生共有400人,请估算该校八年级女生“一分钟跳绳”成绩为优秀的人数.
“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?
如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.
现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣、…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?