(本小题满分14分)在中角所对的边长分别为,且.(Ⅰ)求角的大小; (Ⅱ)若,求周长的最大值及相应的值.
设.(Ⅰ)若,讨论的单调性;(Ⅱ)时,有极值,证明:当时,
椭圆的左、右焦点分别为和,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.
在如图所示的几何体中,平面平面,四边形为平行四边形,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.
为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:表1:男生上网时间与频数分布表
表2:女生上网时间与频数分布表
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.表3 :
附:,其中
已知数列的前项和为,且,.(Ⅰ)求数列和的通项公式;(Ⅱ)求数列的前项和.