已知实数列等比数列,其中成等差数列.(1)求数列的通项公式;(2)数列的前项和记为证明: <128…).
(本小题满分12分)如图,已知四棱锥P—ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,,(I)证明:;(II)若PB =3,求直线AB与平面PBC所成角的正弦值.
. (本小题满分12分)已知函数(I)求函数f(x)的单调递增区间;(II)记ΔABC的内角A、B、C所对的边长分别为a,b,c,若,ΔABC的面积,求b +c的值.
.(本小题满分10分)选修4-5:不等式选讲 已知函数f(x)=|x-a|-2|x-1|(a∈R).(Ⅰ)当a=3时,求函数f(x)最大值;(Ⅱ)解关于x的不等式f(x)≥0.
(本小题满分10分)选修4-1:几何证明选讲如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.(Ⅰ)求证:四点A,I,H,E共圆;(Ⅱ)若∠C=50°,求∠IEH的度数.
.(本小题满分12分) 设函数f(x)=lnx-p(x-1),p∈R.(Ⅰ)当p=1时,求函数f(x)的单调区间;(Ⅱ)设函数g(x)=xf(x)+p(2x2―x―1),(x≥1),求证:当p≤-时,有g(x)≤0成立.