(本小题满分14分)已知函数.(1)求的导数;(2)求证:不等式上恒成立; (3)求的最大值.
某种水果的单个质量在500g以上视为特等品.随机抽取1000个该水果,结果有50个特等品.将这50个水果的质量数据分组,得到下边的频率分布表.(1)估计该水果的质量不少于560g的概率;(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.
在公差不为0的等差数列中,,且成等比数列.(1)求的通项公式;(2)设,试比较与的大小,并说明理由.
已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.
长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.(1)以直线AB的倾斜角为参数,求曲线C的参数方程;(2)求点P到点距离的最大值.
如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.求证:(1);(2)EF//CB.