红队队员甲、乙、丙与蓝队队员 A 、 B 、 C 进行围棋比赛,甲对 A ,乙对 B ,丙对 C 各一盘,已知甲胜 A ,乙胜 B ,丙胜 C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率; (Ⅱ)用 ξ 表示红队队员获胜的总盘数,求 ξ 的分布列和数学期望 E ξ .
若 ,则复数=( )
观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则( )
展开式中不含项的系数的和为( )
若,则等于( )
9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )