设函数 f ( x ) = x x + 2 ( x > 0 ) ,观察: f 1 ( x ) = f ( x ) = x x + 2
f 2 ( x ) = f ( f 1 ( x ) ) = x 3 x + 4
f 3 ( x ) = f ( f 2 ( x ) ) = x 7 x + 8
f 4 ( x ) = f ( f 3 ( x ) ) = x 15 x + 16
根据以上事实,由归纳推理可得: 当 n ∈ N + 且 n ≥ 2 时, f n ( x ) = f ( f n - 1 ( x ) ) = .
的定义域是___________.
已知集合,,且,则=__________.
设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是 .
若,且,则与的夹角大小为_______.
曲线和在它们交点处的两条切线与轴所围成的三角形面积是 .