((本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD,底面为直角梯形,,且AD=2,AB=BC=1,PA=(Ⅰ)设M为PD的中点,求证:平面PAB;(Ⅱ)若二面角B—PC—D的大小为150°,求此四棱锥的体积.
若a、b、c都是正数,且a+b+c=1, 求证: (1–a)(1–b)(1–c)≥8abc
已知双曲线经过点M(),且以直线x= 1为右准线. (1)如果F(3,0)为此双曲线的右焦点,求双曲线方程; (2)如果离心率e=2,求双曲线方程.
已知椭圆:上的两点A(0,)和点B,若以AB为边作正△ABC,当B变动时,计算△ABC的最大面积及其条件.
已知抛物线C的准线为x =(p>0),顶点在原点,抛物线C与直线l:y =x-1相交所得弦的长为3,求的值和抛物线方程.
求两焦点的坐标分别为(-2,0),(2,0),且经过点P(2,)的椭圆方程.