(本小题满分7分)如图,已知二次函数的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1)求一次函数解析式;(2)求顶点P的坐标;(3)平移直线AB使其过点P,如果点M在平移后的直线上,且,求点M坐标;(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.
如图,抛物线与轴交于,两点,与轴交于点,点的坐标是,为抛物线上的一个动点,过点作轴于点,交直线于点,抛物线的对称轴是直线.
(1)求抛物线的函数表达式;
(2)若点在第二象限内,且,求的面积.
(3)在(2)的条件下,若为直线上一点,在轴的上方,是否存在点,使是以为腰的等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.
如图,和是有公共顶点的等腰直角三角形,.
(1)如图1,连接,,的延长线交于点,交于点,求证:;
(2)如图2,把绕点顺时针旋转,当点落在上时,连接,,的延长线交于点,若,,求的面积.
如图,是的直径,是的弦,过点作的切线,交的延长线于点,过点作于点,交的延长线于点.
(1)求证:;
(2)若,,求的半径.
4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”我市某中学响应号召,鼓励师生利用课余时间广泛阅读,该校文学社发起了“读书感悟分享”比赛活动根据参赛学生的成绩划分为,,,四个等级,并绘制了下面不完整的统计图表,根据图表中提供的信息解答下列问题;
频数
频率
4
0.3
16
(1)求,的值;
(2)求等级对应扇形圆心角的度数;
(3)学校要从等级的学生中随机选取2人参加市级比赛,求等级中的学生小明被选中参加市级比赛的概率.
如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是24.反比例函数的图象经过点和,求:
(1)反比例函数的表达式;
(2)所在直线的函数表达式.