(本小题满分7分)如图,已知二次函数的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1)求一次函数解析式;(2)求顶点P的坐标;(3)平移直线AB使其过点P,如果点M在平移后的直线上,且,求点M坐标;(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.
如图,放置在水平桌面上的台灯的灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD="60°." 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)
如图,等边三角形ABC,点E是AB上一点,点D在CB的延长线上,且ED=EC,EF∥AC交BC于点F. (1)试说明四边形AEFC是等腰梯形;(4分)(2)请判断AE与DB的数量关系,并说明你的理由.(4分)
抛物线交轴于A、B两点,交轴于点,对称轴为直线,且A、C两点的坐标分别为、. (1)求抛物线和直线BC:的解析式; (2)当时,直接写出x的取值范围.
4张不透明的卡片,除正面画有不同的图形外,其它均相同,把这4张卡片洗匀后,正面向下放在桌上。 ⑴从这4张卡片中随机抽取一张,它是轴对称图形但不是中心对称图形的概率是多少?(4分) ⑵从这4张卡片中随机抽取2张,利用列表或画树状图计算:2张卡片都是中心对称图形的概率是多少?(4分)
“五一”期间,某超市贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2的频数分布直方图. (1)补全频数分布直方图; (2)求所调查的200人次摸奖的获奖率; (3)若超市每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?(4分)