(.在一次购物抽奖活动中,假设某10张券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没奖。某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的概率分布列。
已知双曲线的两条渐近线与抛物线的准线分别交于A, B两点, O为坐标原点.若双曲线的离心率为2,△AOB的面积为.(1)求抛物线的方程;(2)过点的直线与抛物线交于不同的两点,若在轴上存在一点使得是等边三角形,求的值.
若函数f(x)=ax2+2x-ln x在x=1处取得极值.(1)求a的值;(2)求函数f(x)的单调区间及极值.
在平面直角坐标系中,已知圆:和点,过点的直线交圆于两点.(1)若,求直线的方程;(2)设弦的中点为,求点的轨迹方程.
已知一几何体如图所示,正方形和梯形所在平面互相垂直,,,,,.(Ⅰ)求证:平面; (Ⅱ)求该几何体的体积.
直线l过点P(0,2)且与椭圆相交于M,N两点,求面积的最大值.