双曲线C:-y2=1,设过A(-3,0)的直线l的方向向量e=(1,k).(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到达直线l的距离为.
设函数,如果,求的取值范围.
已知平面内两点(-1,1),(1,3).(Ⅰ)求过两点的直线方程;(Ⅱ)求过两点且圆心在轴上的圆的方程.
已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,(Ⅰ)求椭圆E的方程;(Ⅱ)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
已知P()为函数图像上一点,O为坐标原点,记直线OP的斜率。(Ⅰ)求函数的单调区间;(Ⅱ)设,求函数的最小值。
正项数列的前n项和为,且。(Ⅰ)证明数列为等差数列并求其通项公式;(2)设,数列的前n项和为,证明:。