(12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为,第二次出现的点数为.(1)求事件“”的概率;(2)求事件“”的概率.
要使函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围.
求下列函数的单调递增区间:(1)y=(;(2)y=2.
已知a=,b=9.求:(1)(2).
已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)="-" .(1)判断并证明f(x)在R上的单调性;(2)求f(x)在[-3,3]上的最值.
化简下列各式(其中各字母均为正数):(1)(2)