(本小题满分5分)列方程或方程组解应用题:某学校组织九年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位,求该校九年级学生参加社会实践活动的人数.
如图,公路上有A、B、C三个汽车站,一辆汽车8︰00从离A站10km的P地出发,向C站匀速行驶,15min后离A站30km.(1)设出发x h后,汽车离A站y km,写出y与x之间的函数表达式;(2)当汽车行驶到离A站250km的B站时,接到通知要在12︰00前赶到离B站60km的C站.汽车按原速行驶,能否准时到达?如果能,那么汽车何时到达C站?
已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方加一个△DEA,且使DE∥AC,AE∥BD.(1)求证:四边形DEAP是菱形;(2)若AE=CD,求∠DPC的度数.
(本题满分10分) 在我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 (2)把条形统计图补充完整;(3)已知该校有750人,估计全校喜欢乒乓球的人数是多少?
(本题满分10分) 如图,已知6×6的正方形网格中,每一个小正方形的边长为1,△ABC的顶点A、B、C都在小正方形的顶点上.
(本题满分10分)已知:如图,平行四边形ABCD中,AB⊥AC,对角线AC、BD交于O点,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.(1) 当旋转角为90°时,求证:四边形ABEF是平行四边形;(2) 求证:在旋转过程中,AF=EC.