已知α,β是方程4x2-4tx-1=0(t∈R)的两个实数根,函数f(x)=的定义域为[α,β].(1)判断f(x)在[α,β]上的单调性,并证明你的结论;(2)设g(t)=maxf(x)-minf(x),求函数g(t)的最小值
已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量。(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求∠ 的取值范围;
已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;(2)求动弦AB的中点P的轨迹方程.
若直线mx+y+2=0与线段AB有交点,其中A(-2, 3),B(3,2),求实数m的取值范围。
给定抛物线C:F是C的焦点,过点F的直线与C相交于A、B两点. (Ⅰ)设的斜率为1,求夹角的大小; (Ⅱ)设,求在轴上截距的变化范围.
如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.(1)证明PA⊥平面ABCD;(2)求以AC为棱,EAC与DAC为面的二面角的大小;(3)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.