已知α,β是方程4x2-4tx-1=0(t∈R)的两个实数根,函数f(x)=的定义域为[α,β].(1)判断f(x)在[α,β]上的单调性,并证明你的结论;(2)设g(t)=maxf(x)-minf(x),求函数g(t)的最小值
已知数列的前项和为满足. (Ⅰ)函数与函数互为反函数,令,求数列的前项和; (Ⅱ)已知数列满足,证明:对任意的整数,有.
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点. (Ⅰ)当点在圆上运动时,求点的轨迹方程; (Ⅱ)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米. (Ⅰ)求水面宽; (Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米? (Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?
如图1,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2). (Ⅰ)求证:; (Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由; (Ⅲ)求二面角的正弦值.
已知函数的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在中,角对边为,,且满足. (Ⅰ)求的面积; (Ⅱ)求函数的单调递增区间.