学校欲在操场边上一直角三角形空地ABC上种植草坪,并需铺设一根水管EF(E在AC上,F在AB上)用于灌溉,已知∠A=30°,∠C=90°,BC=2a,D是BC中点,为确保灌溉的效果,铺设时要求∠EDF=60°。现有两种方案可供参考。甲方案:取AC的中点E铺设水管;乙方案:取AB的中点F铺设水管。(1)比较甲乙两种方案,哪一种方案更合理(EF的长较小的合理);(2)学校研究小组通过研究得出:无论D在BC的什么位置,总存在E,F两点,使△DEF为正三角形。试证明该结论的正确性。
给出下列四个结论: (1)如图中,D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是; (2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2, ,n),用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加1 cm,则其体重约增加0.85 kg; (3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力; (4)已知随机变量服从正态分布则 其中正确结论的个数为()
(本小题满分10分) 已知数列通项公式为,其中为常数,且,.等式,其中为实常数. (1)若,求的值; (2)若,且,求实数的值.
(本小题满分10分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,AP=1,AD=,E为线段PD上一点,记.当时,二面角的平面角的余弦值为. (1)求AB的长; (2)当时,求直线BP与直线CE所成角的余弦值.
(本小题满分10分,不等式选讲) 已知实数满足,求的最小值.
(本小题满分10分,坐标系与参数方程选讲) 在平面直角坐标系xOy中,已知直线的参数方程为:(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.直线与圆相交于A,B两点,求线段AB的长.