如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,点M是棱PC的中点,平面ABCD,AC、BD交于点O。(1)求证:,求证:AM平面PBD;(2)若二面角M—AB—D的余弦值等于,求PA的长
袋子中有相同大小的红球3个及白球4个,现从中随机取球。(1)取球3次,每次取后放回,求取到红球至少2次的概率;(2)现从袋子中逐个不放回的取球,若取到红球则继续取球,取到白球则停止取球,求取球次数的分布列与均值。
已知函数(1)将的解析基本功化成的形式,并求函数图象离y轴最近的对称轴的方程;(2)求函数内的值域
:已知点列满足:,其中,又已知,.(1)若,求的表达式;(2)已知点B,记,且成立,试求a的取值范围;(3)设(2)中的数列的前n项和为,试求: 。
:某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润 (单位:万元,),记第天的利润率,例如(1)求的值;(2)求第天的利润率;(3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.