(.选修4—1:几何证明选讲如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转到O D.(1)求线段PD的长;(2)在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由.
已知等比数列的各项均为正数,且成等差数列,成等比数列.(1)求数列的通项公式;(2)已知,记,,求证:
在中,(1)求的值;(2)求的面积.
设函数(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同单位长度.已知曲线过点的直线的参数方程为(t为参数). (1)求曲线C与直线 的普通方程;(2)设曲线C经过伸缩变换得到曲线,若直线 与曲线相切,求实数的值.
如图,在锐角三角形ABC中,D 为C在AB上的射影,E 为D在BC上的射影,F为DE上一点,且满足 (1)证明:(2)若AD=2,CD=3.DB=4,求的值.