. 已知定圆圆心为A;动圆M过点且与圆A相切,圆心M 的坐标为且,它的轨迹记为C。(1)求曲线C的方程;(2)过一点N(1,0)作两条互相垂直的直线与曲线C分别交于点P和Q,试问这两条直线能否使得向量互相垂直?若存在,求出点P,Q的横坐标,若不存在,请说明理由。
(本小题满分10分)已知角为的三个内角,其对边分别为,若向量,,,且.(1)若的面积,求bc的值.(2)求的取值范围.
(1)求动点P的轨迹C的方程;(2)设M、N是直线l上的两个点,点E是点F关于原点的对称点,若·=0,求 | MN | 的最小值。
(1)a的值;(2)函数y=f (x) 的单调区间;
工作,办公室里只有一部电话机,设经该机打进的电话是打给甲、乙、丙的概率依次为、、。若在一段时间内打进三个电话,且各个电话相互独立。求:(1)这三个电话是打给同一个人的概率。(2)这三个电话中恰有两个是打给甲的概率。
AD=2,PA=2,PD=2,∠PAB=60°。(1)证明:AD⊥平面PAB;(2)求异面直线PC与AD所成的角的大小;(3)求二面角P-BD-A的大小。