(本小题满分12分)已知关于x的二次方程的两根满足,且.(1)试用表示;(2)求证:数列是等比数列;(3)求数列的前n项和.
已知函数 (1)当时,求函数的值域; (2)设的内角,,的对应边分别为,,,且,,若向量 与向量共线,求,的值.
已知命题:,是方程的两个实根,且不等式对任意恒成立;命题:不等式有解,若命题为真,为假,求实数的取值范围.
已知椭圆上的点到左、右两焦点的距离之和为,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线交椭圆于两点. (1)若轴上一点满足,求直线斜率的值; (2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
已知数列为等差数列,,数列的前n项和为,且有. (Ⅰ)求、的通项公式; (Ⅱ)若,的前n项和为,求.
设命题实数满足,其中,命题实数满足. (Ⅰ)若,且为真,求实数的取值范围; (Ⅱ)若是的充分不必要条件,求实数的取值范围.