(本小题满分13分)某射手A第n次射击时击中靶心的概率为(1)求A射击5次,直到第5次才击中靶心的概率P;(2)若A共射击3次,求恰好击中1次靶心的概率。
已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{bn}的b2,b3,b4. (Ⅰ)求数列{an}与{bn}的通项公式; (Ⅱ)设数列{cn}对任意自然数n均有=an+1成立,求c1+c2+…+c2014的值.
如图,在直三棱柱ABC﹣A1B1C1中,AB=2,AC=AA1=4,∠ABC=90°. (1)求三棱柱ABC﹣A1B1C1的表面积S; (2)求异面直线A1B与AC所成角的余弦值.
甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下: 甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖. 乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖. 问:购买该商品的顾客在哪家商场中奖的可能性大?
已知函数(其中ω为正常数,x∈R)的最小正周期为π. (1)求ω的值; (2)在△ABC中,若A<B,且,求.
(本小题满分14分)已知函数. (1)求的单调区间; (2)已知数列的通项公式为,求证:(为自然对数的底数); (3)若,且对任意恒成立,求的最大值