甲乙两人各有相同的小球10个,在每人的10个小球中都有5个标有数字1,3个标有数字2,2个标有数字3。两人同时分别从自己的小球中任意抽取1个,规定:若抽取的两个小球上的数字相同,则甲获胜,否则乙获胜,求乙获胜的概率。
如图所示,AB、CD都是圆的弦,且AB∥CD,F为圆上一点,延长FD、AB交于点E. 求证:AE·AC=AF·DE.
试说明矩形的四个顶点在以对角线的交点为圆心的同一个圆上.
(拓展深化)如图①所示,△ABC内接于⊙O,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点. (1)求证:AB2=AD·AE; (2)如图②所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.
如图所示,AB是⊙O的直径,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足为D,求AD、BD和CD的长.
定义在R上的函数同时满足以下条件: ①在(0,1)上是减函数,在(1,+∞)上是增函数; ②是偶函数; ③在x=0处的切线与直线y=x+2垂直. (1)求函数的解析式; (2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。