已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2,求EF的长.
(本小题满分16分) 已知圆的方程为,直线的方程为,点在直线上,过点作圆的切线,切点为. (1)若,试求点的坐标; (2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程 (3)经过三点的圆是否经过异于点M的定点,若经过,请求出此定点的坐标;若不经过,请说明理由。
(本小题满分16分)某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=18km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y ,(1)设,把y表示成的函数关系式;(2)变电站建于何处时,它到三个小区的距离之和最小?
(本小题满分14分)已知椭圆C的中心O在原点,长轴在x轴上,焦距为,短轴长为8, (1)求椭圆C的方程; (2)过点作倾斜角为的直线交椭圆C于A、B两点,求的面积。
(本小题满分14分)如图,长方体ABCD—A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点. (1)求证:直线∥平面; (2)求证:平面平面; (3)求三棱锥D—PAC的体积。
(本小题满分14分)已知,,若是的充分不必要条件,求的取值范围。